MS DISEASE PROGRESSION
Some signs and symptoms may be difficult to detect on exam, such as changes in mood and cognition, fatigue, and sexual dysfunction.13,14
DISABILITY ACCUMULATION
MECHANISM OF ACTION
*OCREVUS [IV] and OCREVUS ZUNOVO contain ocrelizumab, a recombinant humanized monoclonal antibody directed against CD20-expressing B cells. Lymphoid stem cells and plasma cells do not express CD20 and therefore are not directly targeted by OCREVUS [IV] or OCREVUS ZUNOVO.24-26
The precise mechanisms through which OCREVUS [IV] and OCREVUS ZUNOVO exert their therapeutic clinical effects in relapsing multiple sclerosis (RMS) and relapsing-remitting multiple sclerosis (RRMS) are not fully elucidated but are presumed to involve immunomodulation through selective binding to CD20-expressing B cells. Following cell surface binding to B lymphocytes, OCREVUS [IV] and OCREVUS ZUNOVO result in antibody-dependent cellular cytolysis and complement-mediated lysis.24,25
OCREVUS ZUNOVO also contains hyaluronidase, an active excipient that works in a transient and reversible way to increase the dispersion area and allow large fluid volumes to be administered subcutaneously.25,28,29
CIS=clinically isolated syndrome; IV=intravenous; MRI=magnetic resonance imaging; MS=multiple sclerosis; PIRA=progression independent of relapse activity; PPMS=primary progressive multiple sclerosis; RAW=relapse-associated worsening; RMS=relapsing multiple sclerosis; RRMS=relapsing-remitting multiple sclerosis; SPMS=secondary progressive multiple sclerosis.
De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74(23):1868-1876. doi:10.1212/WNL.0b013e3181e24136
De Stefano N, Giorgio A, Battaglini M, et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010;74(23):1868-1876. doi:10.1212/WNL.0b013e3181e24136
Fox RJ, Cohen JA. Multiple sclerosis: the importance of early recognition and treatment. Cleve Clin J Med. 2001;68(2):157-171. doi:10.3949/ccjm.68.2.157
Fox RJ, Cohen JA. Multiple sclerosis: the importance of early recognition and treatment. Cleve Clin J Med. 2001;68(2):157-171. doi:10.3949/ccjm.68.2.157
Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(3):606-616. doi:10.1093/brain/awl007
Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(3):606-616. doi:10.1093/brain/awl007
University of California, San Francisco MS-EPIC Team; Cree BAC, Hollenbach JA, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85(5):653-666. doi:10.1002/ana.25463
University of California, San Francisco MS-EPIC Team; Cree BAC, Hollenbach JA, et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol. 2019;85(5):653-666. doi:10.1002/ana.25463
Kantarci OH, Lebrun C, Siva A, et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann Neurol. 2016;79(2):288-294. doi:10.1002/ana.24564
Kantarci OH, Lebrun C, Siva A, et al. Primary progressive multiple sclerosis evolving from radiologically isolated syndrome. Ann Neurol. 2016;79(2):288-294. doi:10.1002/ana.24564
Singh S, Dallenga T, Winkler A, et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflammation. 2017;14(1):57. doi:10.1186/s12974-017-0831-8
Singh S, Dallenga T, Winkler A, et al. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis. J Neuroinflammation. 2017;14(1):57. doi:10.1186/s12974-017-0831-8
Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816-1821. doi:10.1177/1352458520970841
Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler. 2020;26(14):1816-1821. doi:10.1177/1352458520970841
Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93(1):1-12. doi:10.1016/j.pneurobio.2010.09.005
Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011;93(1):1-12. doi:10.1016/j.pneurobio.2010.09.005
Kamel FO. Factors involved in relapse of multiple sclerosis. J Microsc Ultrastruct. 2019;7(3):103-108. doi:10.4103/JMAU.JMAU_59_18
Kamel FO. Factors involved in relapse of multiple sclerosis. J Microsc Ultrastruct. 2019;7(3):103-108. doi:10.4103/JMAU.JMAU_59_18
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. doi:10.1212/wnl.33.11.1444
Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33(11):1444-1452. doi:10.1212/wnl.33.11.1444
Strik M, Shanahan CJ, van der Walt A, et al. Functional correlates of motor control impairments in multiple sclerosis: a 7 Tesla task functional MRI study. Hum Brain Mapp. 2021;42(8):2569-2582.
Strik M, Shanahan CJ, van der Walt A, et al. Functional correlates of motor control impairments in multiple sclerosis: a 7 Tesla task functional MRI study. Hum Brain Mapp. 2021;42(8):2569-2582.
Krieger S, Sumowski J. Subclinical burden of multiple sclerosis at EDSS 0. Mult Scler J. 2021;27(2S):3-133.
Krieger S, Sumowski J. Subclinical burden of multiple sclerosis at EDSS 0. Mult Scler J. 2021;27(2S):3-133.
Watson TM, Ford E, Worthington E, Lincoln NB. Validation of mood measures for people with multiple sclerosis. Int J MS Care. 2014;16(2):105-109. doi:10.7224/1537-2073.2013-013
Watson TM, Ford E, Worthington E, Lincoln NB. Validation of mood measures for people with multiple sclerosis. Int J MS Care. 2014;16(2):105-109. doi:10.7224/1537-2073.2013-013
Javůrková A, Zimová D, Tomašovičová K, Raudenská J. Cognitive deficits and neuropsychological assessment in multiple sclerosis. In: Gonzalez-Quevedo A, ed. Trending Topics in Multiple Sclerosis. IntechOpen; 2016:211-226.
Javůrková A, Zimová D, Tomašovičová K, Raudenská J. Cognitive deficits and neuropsychological assessment in multiple sclerosis. In: Gonzalez-Quevedo A, ed. Trending Topics in Multiple Sclerosis. IntechOpen; 2016:211-226.
Krieger SC, Sumowski J. New insights into multiple sclerosis clinical course from the topographical model and functional reserve. Neurol Clin. 2018;36(1):13-25. doi:10.1016/j.ncl.2017.08.003
Krieger SC, Sumowski J. New insights into multiple sclerosis clinical course from the topographical model and functional reserve. Neurol Clin. 2018;36(1):13-25. doi:10.1016/j.ncl.2017.08.003
Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-286. doi:10.1212/WNL.0000000000000560
Lublin FD, Reingold SC, Cohen JA, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278-286. doi:10.1212/WNL.0000000000000560
Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46(4):907-911. doi:10.1212/wnl.46.4.907
Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology. 1996;46(4):907-911. doi:10.1212/wnl.46.4.907
Portaccio E, Bellinvia A, Fonderico M, et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain. 2022;145(8):2796-2805. doi:10.1093/brain/awac111
Portaccio E, Bellinvia A, Fonderico M, et al. Progression is independent of relapse activity in early multiple sclerosis: a real-life cohort study. Brain. 2022;145(8):2796-2805. doi:10.1093/brain/awac111
Krieger SC, Cook K, De Nino S, Fletcher M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e279. doi:10.1212/NXI.0000000000000279
Krieger SC, Cook K, De Nino S, Fletcher M. The topographical model of multiple sclerosis: a dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e279. doi:10.1212/NXI.0000000000000279
Kuhlmann T, Moccia M, Coetzee T, et al; International Advisory Committee on Clinical Trials in Multiple Sclerosis. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. doi:10.1016/S1474-4422(22)00289-7
Kuhlmann T, Moccia M, Coetzee T, et al; International Advisory Committee on Clinical Trials in Multiple Sclerosis. Multiple sclerosis progression: time for a new mechanism-driven framework. Lancet Neurol. 2023;22(1):78-88. doi:10.1016/S1474-4422(22)00289-7
Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 2020;77(9):1132-1140. doi:10.1001/jamaneurol.2020.1568
Kappos L, Wolinsky JS, Giovannoni G, et al. Contribution of relapse-independent progression vs relapse-associated worsening to overall confirmed disability accumulation in typical relapsing multiple sclerosis in a pooled analysis of 2 randomized clinical trials. JAMA Neurol. 2020;77(9):1132-1140. doi:10.1001/jamaneurol.2020.1568
Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147-3161. doi:10.1093/brain/awac016
Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147-3161. doi:10.1093/brain/awac016
Tur C, Carbonell-Mirabent P, Cobo-Calvo Á, et al. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol. 2023;80(2):151-160. doi:10.1001/jamaneurol.2022.4655
Tur C, Carbonell-Mirabent P, Cobo-Calvo Á, et al. Association of early progression independent of relapse activity with long-term disability after a first demyelinating event in multiple sclerosis. JAMA Neurol. 2023;80(2):151-160. doi:10.1001/jamaneurol.2022.4655
OCREVUS [prescribing information]. South San Francisco, CA: Genentech, Inc. 2025.
OCREVUS [prescribing information]. South San Francisco, CA: Genentech, Inc. 2025.
OCREVUS ZUNOVO [prescribing information]. South San Francisco, CA: Genentech, Inc. 2025.
OCREVUS ZUNOVO [prescribing information]. South San Francisco, CA: Genentech, Inc. 2025.
Hauser SL, Bar-Or A, Comi G, et al; OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234. doi:10.1056/NEJMoa1601277
Hauser SL, Bar-Or A, Comi G, et al; OPERA I and OPERA II Clinical Investigators. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221-234. doi:10.1056/NEJMoa1601277
Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41-50. doi:10.1016/j.ebiom.2017.01.042
Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017;16:41-50. doi:10.1016/j.ebiom.2017.01.042
Connor RJ, Taverna DM, Thrall K, LaBarre MJ, Kang DW. Use of computed tomography to assess subcutaneous drug dispersion with recombinant human hyaluronidase PH20 in a swine model. J Pharmacol Toxicol Methods. 2020;106:106936. doi:10.1016/j.vascn.2020.106936
Connor RJ, Taverna DM, Thrall K, LaBarre MJ, Kang DW. Use of computed tomography to assess subcutaneous drug dispersion with recombinant human hyaluronidase PH20 in a swine model. J Pharmacol Toxicol Methods. 2020;106:106936. doi:10.1016/j.vascn.2020.106936
Bookbinder LH, Hofer A, Haller MF, et al. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release. 2006;114(2):230-241. doi:10.1016/j.jconrel.2006.05.027
Bookbinder LH, Hofer A, Haller MF, et al. A recombinant human enzyme for enhanced interstitial transport of therapeutics. J Control Release. 2006;114(2):230-241. doi:10.1016/j.jconrel.2006.05.027
The link you have selected will take you away from this site to one that is not owned or controlled by Genentech, Inc. Genentech, Inc. makes no representation as to the accuracy of the information contained on sites we do not own or control. Genentech does not recommend and does not endorse the content on any third-party websites. Your use of third-party websites is at your own risk and subject to the terms and conditions of use for such sites.